注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)復(fù)分析可視化方法(英文版)

復(fù)分析可視化方法(英文版)

復(fù)分析可視化方法(英文版)

定 價(jià):¥79.00

作 者: (美)尼達(dá)姆 著
出版社: 人民郵電出版社
叢編項(xiàng):
標(biāo) 簽: 計(jì)算機(jī)

ISBN: 9787115155160 出版時(shí)間: 2007-02-01 包裝: 膠版紙
開本: 16開 頁(yè)數(shù): 0頁(yè) 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書是復(fù)分析領(lǐng)域近年來(lái)較有影響的一本著作。作者用豐富的圖例展示各種概念、定理和證明思路,十分便于讀者理解,充分揭示了復(fù)分析的數(shù)學(xué)之美。書中講述的內(nèi)容有幾何、復(fù)變函數(shù)變換、默比烏斯變換、微分、非歐幾何、復(fù)積分、柯西公式、向量場(chǎng)、復(fù)積分、調(diào)和函數(shù)等。.本書可作為大學(xué)本科、研究生的復(fù)分析課程教材或參考書。.“……總的說來(lái),本書確實(shí)體現(xiàn)了近幾十年數(shù)學(xué)教材的一個(gè)發(fā)展趨勢(shì)。把最新的成就,用淺顯的方法教給低年級(jí)學(xué)生?!薄R民友(著名數(shù)學(xué)家,原武漢大學(xué)校長(zhǎng)).“《復(fù)分析:可視化方法》對(duì)我來(lái)說首先是一個(gè)欣喜,隨后便成為深得我心的一本書。Tristan Needham 運(yùn)用創(chuàng)新、獨(dú)特的幾何觀點(diǎn),揭示復(fù)分析之美中許多令人吃驚的、未被人們認(rèn)識(shí)到的方面。”——Roger Penrose(英國(guó)大物理學(xué)家).“如果你一年之內(nèi)只能買一本數(shù)學(xué)書的話,那就買這一本吧?!薄狹athematical Gazette(數(shù)學(xué)公報(bào)).本書是復(fù)分析領(lǐng)域的一部名著,開創(chuàng)了數(shù)學(xué)領(lǐng)域的可視化潮流,自首次出版以來(lái),已重印了十多次,深受世界讀者好評(píng)。作者用真正不同尋常和獨(dú)具創(chuàng)造性的視角來(lái)闡述復(fù)分析這一經(jīng)典學(xué)科,通過大量的圖示使原本比較抽象的數(shù)學(xué)概念,變得直觀易懂,讀者在透徹理解理論的同時(shí),還能充分領(lǐng)略數(shù)學(xué)之美。.Tristan Needham舊金山大學(xué)數(shù)學(xué)系教授,理學(xué)院副院長(zhǎng)。 牛津大學(xué)博士,導(dǎo)師為Roger Penrose(與霍金齊名的英國(guó)物理學(xué)家)。 因本書被美國(guó)數(shù)學(xué)會(huì)授予Carl B. Allendoerfer獎(jiǎng)。他的研究領(lǐng)域包括幾何、復(fù)分析、數(shù)學(xué)史、廣義相對(duì)論。...

作者簡(jiǎn)介

  Tristan Needham,舊金山大學(xué)教授系教授,理學(xué)院副院長(zhǎng)。牛津大學(xué)博士,導(dǎo)師為Roger Penrose(與霍金齊名的英國(guó)物理學(xué)家)。因本書被美國(guó)數(shù)學(xué)會(huì)授予Carl B.Allendoerfer獎(jiǎng)。他的研究領(lǐng)域包括幾何、復(fù)分析、數(shù)學(xué)史、廣義相對(duì)論。

圖書目錄

1 Geometry and CompleX ArIthmetIc
?、? IntroductIon 
?、? Euler's Formula 
?、? Some ApplIcatIons 
?、? TransformatIons and EuclIdean Geometry* 
?、? EXercIses 
2 CompleX FunctIons as TransformatIons 
Ⅰ IntroductIon 
 Ⅱ PolynomIals 
?、? Power SerIes 
?、? The EXponentIal FunctIon 
?、? CosIne and SIne 
?、? MultIfunctIons 
?、鳌he LogarIthm FunctIon 
?、VeragIng oVer CIrcles* 
 Ⅸ EXercIses 
3 M?bIus TransformatIons and InVersIon 
?、? IntroductIon 
?、? InVersIon 
?、? Three Illustrative ApplIcatIons of InVersIon 
?、? The RIemann Sphere 
 Ⅴ M?bIus TransformatIons: BasIc Results 
?、? M?bIus TransformatIons as MatrIces* 
 Ⅶ VisualIzatIon and ClassIfIcatIon*
?、ecomposItIon Into 2 or 4 ReflectIons* 
?、? AutomorphIsms of the UnIt DIsc* 
?、? EXercIses 
4 DIfferentIatIon: The AmplItwIst Concept 
?、? IntroductIon 
?、? A PuzzlIng Phenomenon 
?、? Local DescrIptIon of MappIngs In the Plane 
?、? The CompleX Derivative as AmplItwIst 
 Ⅴ Some SImple EXamples 
?、? Conformal = AnalytIc 
?、鳌rItIcal PoInts 
?、he Cauchy-RIemann EquatIons 
?、? EXercIses 
5 Further Geometry of DIfferentIatIon
?、? Cauchy-RIemann ReVealed 
?、? An IntImatIon of RIgIdIty 
?、? Visual DIfferentIatIon of log(z) 
 Ⅳ Rules of DIfferentIatIon 
?、? PolynomIals, Power SerIes, and RatIonal Func-tIons 
?、? Visual DIfferentIatIon of the Power FunctIon 
?、鳌isual DIfferentIatIon of eXp(z) 231
?、eometrIc SolutIon of E'= E  
?、? An ApplIcatIon of HIgher Derivatives: CurVa-ture* 
?、? CelestIal MechanIcs* 
?、? AnalytIc ContInuatIon* 
 Ⅻ EXercIses 
6 Non-EuclIdean Geometry* 
?、? IntroductIon 
 Ⅱ SpherIcal Geometry 
?、? HyperbolIc Geometry 
?、? EXercIses 
7 WIndIng Numbers and Topology
?、瘛IndIng Number
 Ⅱ Hopf's Degree Theorem 
?、? PolynomIals and the Argument PrIncIple 
 Ⅳ A TopologIcal Argument PrIncIple* 
?、? Rouché's Theorem 
?、? MaXIma and MInIma 
?、鳌he Schwarz-PIck Lemma* 
?、he GeneralIzed Argument PrIncIple 
?、? EXercIses 
8 CompleX IntegratIon: Cauchy's Theorem 
?、騨troductIon 
?、? The Real Integral 
?、? The CompleX Integral 
?、? CompleX InVersIon 
 Ⅴ ConjugatIon 
?、? Power FunctIons 
?、鳌he EXponentIal MappIng 
?、he Fundamental Theorem 
?、? ParametrIc EValuatIon 
?、? Cauchy's Theorem 
 Ⅺ The General Cauchy Theorem 
?、he General Formula of Contour IntegratIon
?、XercIses 
9 Cauchy's Formula and Its ApplIcatIons 
?、? Cauchy's Formula 
 Ⅱ InfInIte DIfferentIabIlIty and Taylor SerIes 
?、? Calculus of ResIdues 
?、? Annular Laurent SerIes 
?、? EXercIses 
10 Vector FIelds: PhysIcs and Topology 
?、? Vector FIelds 
?、? WIndIng Numbers and Vector FIelds* 
 Ⅲ Flows on Closed Surfaces* 
?、? EXercIses 
11 Vector FIelds and CompleX IntegratIon 
?、? FluX and Work 
?、? CompleX IntegratIon In Terms of Vector FIelds
?、? The CompleX PotentIal 
?、? EXercIses 
12 Flows and HarmonIc FunctIons 
?、? HarmonIc Duals 
?、? Conformal I nVarIance 
?、? A Powerful ComputatIonal Tool 
?、? The CompleX CurVature ReVIsIted* 
?、? Flow Around an Obstacle 
?、? The PhysIcs of RIemann's MappIng Theorem
?、? Dirichlet's Problem 
?、xercIses 
References 
IndeX

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.shuitoufair.cn 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)